1. This problem has three parts.

(a) (2 points) Sketch the curves 2 = 16 — 22 and 2z = 22 — 16 in the 2-z plane. Determine the points
of intersection of the two curves.
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(b) (5 points) Find the area bounded by the curves z = 16 — 2% and z = 2? — 16 in the -z plane.
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(c) (3 points) Find the volume bounded by the surfaces z = 16 — 2%, z = 22> — 16, y = 3, and y = —3.
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2. Let f(z,y,2) = 1%“’3# — Yz,

(a) (4 points) Find V f and evaluate it at (x,y,2) = (1,2, 3).
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(b) (3 points) Find the unit vector u along which the directional derivative D,f is maximum at
(x,y,2) = (1,2,3).
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(c) (3 points) Find a unit vector u such that the directional derivative D, f is zero.
Cey W =Ca.b, )
Da"e Cle2, %l\ = V‘GC‘\’L\%X ¢ a = (‘Scl.:}\° (C\.\o,(.) = 'ga*k‘\'ac
Dad (1.23) =0 3 -6atbt FC =0

Toke T 4o be +he uwt Vvecdhor & -2,
-2\
o Sy =\§‘_ u.-z.\j
Jesey N0

NO_*E You con tvke L—A‘ o be aij unit vedor with

-50+ bt 3C =0

—\ \ \
. = — (|,S,0 — (0, =3, \).
€.94. u m( ) or o



3. Evaluate the triple integral [ [ [, 2yzdV for the following two choices of B:
(a) (5 points) Bisthecube 0 <2 <1,0<y<1,0<z<1.
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(b) (5 points) B is the region 0 <z <y <z < 1.
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4. In both parts, the density is assumed to be p(z,y) = z.

(a) (5 points) The plot below
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shows the sector of a circle of radius 1. The angle at the center is § or 45? as indicated. Find the
mass of the sector.
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5. In all the three parts, z and y are assumed to be positive with zy = 4.

a) (3 points) Find the point (z,y), with z,y > 0, that is an extremum of f(x,y) = 2y’ subject to
) ) Y 2
g(z,y) = 2y = 4.
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(b) (3 points) Sketch the curve g(z,y) = xy = 4 as well as the level curves of f(x,y) with f(z,y) being

;, 2,8, respectively, in the first quadrant of the z-y plane. Is the extremum of part (a) a minimum
or a maximum? Explain.
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¢) (4 points) Find the mini ‘ 2 g 2wl j i
(c) (4p ) the minimum value of %- + == subject to xy = 4 and x,y positive.
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6. Consider the surface given by 2% + y? + 322 = 3 and the plane z +y + z = 1.
(a) (3 points) Explain why the plane intersects the surface.
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(b) (7 points) Suppose the curve along which the plane intersects the surface is C'. Find the maximum
and minimum values of z for points on C.
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7. The surface 22 + y? + 22 = 1 is the sphere, and as you know, the area of the upper hemisphere with

z > 0 is 27. In this problem, you will find areas of portions of that surface and your answers should
therefore be less than 27.

(a) (4 points) Find the area of the upper hemisphere inside the cylindrical surface 2 + y* = i.
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(b) (6 points) Find the area of the upper hemisphere inside the cylindrical surface (1 — %) + 2 = i_
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